String Perturbation Theory

In a recent Letter! Gross and Periwal reported that they have suceeded in proving
that the string theoretic perturbation expansion for the partition function diverges at
least as fast as ¥ h!(g2)". Not only that, but in addition they have reported that they
have proven that every series term is positive. Their result is a significant one, because
as they rightly point out “if perturbative string theory were to make sense, string theory
would have nothing to do with physical reality, since there are many features of all per-
turbative treatments of string theory that that are not shared by the real world.” From
these results, they unfortunately overly hastily conclude that the string theory perturba-
tion expansion is not Borel summable.

Without regard as to whether string perturbation theory is or is not in fact sum-
mable, it is possible to see from a simple example that the properties reported by Gross
and Periwal do not suffice to prove Borel non-summability, although if our example were
the correct string theory function, a complex result for the sum would appear. Consider

the example,
e~ tdt
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This function (due to Euler) obeys the divergence and positivity properties shown by
Gross and Periwal and yet is summed perfectly well for g2 < 0. Now it was objected
that the series was not summable for positive real g2, and at first glance, the above rep-
resentation would seem to make no sense because of the singularity in the integrand for
this case. However, by Cauchy’s theorem and the fact that e~ goes to zero as |z| goes
to oo with |arg(z)| < 7 the contour of integration can be rotated to run along any ray in

the right half-plane. Therefore, F(g) can be re-expressed as

B(g) = /OOO exp(—7 cos 0)[cos(7sin 0) + i sin(7 sin 0)]e* dT. @
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In this form (§ < 0) we can analytically continue from g* real and negative through

the upper half-plane to g2 real and positive. Thus our example is Borel summable to a
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complex result on the positive real axis and of course also to its complex conjugate by
taking 6 > 0 and analytically continuing through the lower half-plane.

More generally, of course, it is not necessary to analytically continue the function
to the second Riemann sheet. If for example the singularies of the Borel transform all
lie in the right half-plane, as is the case, a fortiori, for the leading singularity which lies
on the positive real axis by the positivity reported by Gross and Periwal, then the rep-
resentation of eq. (2) allows the extension of the definition of the function to a function
analytic in the cut complex plane (0,400). By taking a limit the values on the positive
real axis can be defined as the boundary values of an analytic function. These sorts of

ideas are familiar in physics from the study of dispersion relations?

in, for example, the
cut energy-plane. For a more general discussion of Borel summation a classic reference is
Hardy.? In addition the extentions of Watson’s theorem due to Graffi et al.* and Sokal®
are worth mention.

In case the string perturbation theory should prove to be summable, and a reason-
able number of terms in the series expansion be computed, then a possible approach to
its approximate summation would be the use of the Padé-Borel summation method.*
The analysis of the values on the positive real axis implied by this method follows di-

rectly from that given here for our example.
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